
” Politehnica’ University of Timisoara
Faculty of Automation and Computer Science

Master of ”Automotive Embedded Software’

Dissertation Project

Business Software Solution � virtualMag

By

Zivojin Mirca

Supervisor:
Prof. Vasile Stoicu � Tivadar

2003

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 2

Table of Contents

Chapter 1: Introduction
1.1 Abstract
1.2 Project description

Chapter 2: Literature review
 2.1 About Web Services
 2.2 About Apache Axis engine
 2.3 About Jasper Reports

Chapter 3: Project Specifications
 3.1 Project design
 3.2 System functionalities
 3.3 User interfaces
 3.4 Database structure
 3.5 System communication
 3.6 Type of reports
 3.7 Security and risk analysis
 3.8 Project management

Chapter 4: Project design
 4.1 Programming structure
 4.2 Component description
 4.3 Sequence diagram

Chapter 5: Installation

Chapter 6: Final Results
 6.1 Component Tests
 6.2 System Tests
 6.3 Tests results
Chapter 7: Conclusions

Chapter 8: Bibliography

Appendix A

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 3

INTRODUCTION

6.1 Abstract

In today–s business environment is necessary to have information–s as fast is

possible, to achieve this we need a software solution for this problem. Internet is an

important and wary powerful environment for getting information–s faster and is

accessible from any part of globe.

The goal of this project is to integrate more applications that work–s together and to

have a unique communication language (XML ™ Extensible Markup Language), this is

possible trough a web services applications.

This project can be done and without integration with Web services by creating a

desktop application in Microsoftê Visual Basic that interrogates database using

Microsoftê Jet OLE DB Provider or by Microsoftê SQL Server. But in this case the

problem that arises is integration with other web applications that has to publish or to

interrogate that database and the most important the costs. In this case we can also

do integration between applications using the Microsoftê Web services technology

but during the extended costs I decided for Java Sunê technology, Tomcat Apache

web server with Axis 1.1 Web Services [***2003,a] engine and MySql server for

database.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 4

1.2. Project description

The aim of this project is to integrate trough a web services this business

functionalities:

- Administration of Warehouse

- Marketing and Management (B2B and B2C)

- Administration of Reports and Documents

All this functionalities has to be designed and integrated to communicate to each

other trough a web interface and trough desktop application and web browser.

Database will be at single place and will contain data for all applications.

Administration of Warehouse, it means a desktop application that represents a

client that exchange data with database server trough Web service. This client is very

important for administrating the warehouse. The main functionalities that have to

implement are:

a) Add new item into warehouse, when new items arrives they must to be

introduced into warehouse and then using this functionality the warehouse

administrator introduces the items details into database, prints the items

bar code label, sets the item inspection and places them into warehouse.

b) Remove the item from warehouse, items from warehouse is used for

creating the final products that are delivered to the client. Using this

functionality the item is removed from warehouse.

c) Modify the item inspection, when the expiration date has expired the

item has to be re-inspected, the quality result can be 3 for accepted, 2 for

good for use and 0 if is rejected, also when re-inspection is done the new

bar code label has to be printed.

d) Add, edit, delete furnisher, this functionalities are used for furnishers

administration.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 5

e) Add, edit, delete manufacturer, this functionalities are used for

manufacturer administration.

f) Add, edit, delete item, this functionalities are used for items

administration.

g) Add, edit, delete item class, this functionalities are used for item class

administration.

h) Item tracking, this functionality is used for tracking the items that are

introduced into warehouse and items that has bean removed from

warehouse.

i) Search items searches the item into warehouse by date of reception,

item index and by item bar code label. After the item is found it displays

details about that item (placement, expiration date and stock)
j) Final products administration, for this functionality we need to track all

items that has bean used and returned for that final product.
k) Create reports, this functionality creates reports for:

1. Warehouse inventory

2. Item tracking

3. Final product items

Marketing and Management, it means a possibility to create web presentations of

products. The presentations are represented by product categories and

alphabetically. Every product has a picture and a description. This is done from a

web browser and has to have these functionalities:

a) Administrate the web catalogs, by this we can create different catalogs for

different product categories.
b) Administrate the web products, by this we can create a product that

belongs to a particular category with a brief description and a picture.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 6

c) Administrate the clients, by this we can administrate the clients and to send

him the promotional offers.
d) Create the web reports, by this we can create reports that are regarded to

the items tracking from warehouse.

Administration of Reports and Documents, this represents a service that creates

reports in PDF, HTML or XLS document format. This service deserves all

applications that need to create reports from data stored into database.

Reports are generated using Jasper Reports [***2001,d] explained letter in this

document.

Figure 1.0 Application Structure

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 7

Literature review

2.1 About Web Services

Web services, in the general meaning of the term, are services offered via the

Web. In a typical Web services scenario, a business application sends a request to a

service at a given URL using the SOAP protocol over HTTP [***2000,b]. The service

receives the request, processes it, and returns a response (see figure x.x). An often-

cited example of a Web service is that of a stock quote service, in which the request

asks for the current price of a specified stock, and the response gives the stock price.

This is one of the simplest forms of a Web service in that the request is filled almost

immediately, with the request and response being parts of the same method call.

Another example could be a service that maps out an efficient route fo r the delivery

of goods. In this case, a business sends a request containing the delivery

destinations, which the service processes to determine the most cost -effective

delivery route. The time it takes to return the response depends on the complexity of

the routing, so the response will probably be sent as an operation that is separate

from the request.

Figure 2.0 ™ Web Services Architecture

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 8

Web services and consumers of Web services are typically businesses,

making Web services predominantly business-to-business (B-to-B) transactions. An

enterprise can be the provider of Web services and also the consumer of other Web

services. For example, a wholesale distributor of spices could be in the consumer

role when it uses a Web service to check on the availability of vanilla beans and in

the provider role when it supplies prospective customers with different vendors–

prices for vanilla beans.

Business-to-Consumer is an additional avenue for Web services. The

discovery capability of the technology may finally make it possible for intelligent

agents to break into the mainstream. Finally, we may be able to have our computers

go out on the Web, find vendors who provide the services we–re interested in,

determine the lowest bidder (or other criteria, such as immediate availability), and

conclude a transaction.

It may also be the need to interact with other companies at a process level rather

than at a transactional level. Business conditions change frequently ™ too frequently

in some cases for transactions to be fully defined. We might see Web services ride

the tide of business process management, providing the infrastructure, or even the

structure itself, of collaborative business. Underlying all of this will be a plethora of

technologies. As is typical of the information technology world, there are competing

standards and platforms. Which in a way is not all bad? The reality of Web services is

that we are pursuing a neutral course in terms of data and data structure, and

layering services on top of transformable, machine-independent data. The ability to

select a particular platform to provide Web services is an advantage to all ™ it future-

proofs the existing and often enormous investment companies have made in their

operational platforms [***2003,g].

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 9

2.2 About Apache Axis engine

Apache AXIS is an implementation of the SOAP (”Simple Object Access

Protocol’) submission to W3C. From the draft W3C [***2000,b] specification ”SOAP is

a lightweight protocol for exchange of information in a decentralized, distributed

environment. It is an XML based protocol that consists of three parts: an envelope

that defines a framework for describing what is in a message and how to process it, a

set of encoding rules for expressing instances of application-defined data types, and

a convention for representing remote procedure calls and responses’.

Architectural overview

Axis is all about processing Messages. When the central Axis processing logic runs,

a series of Handlers are each invoked in order. The particular order is determined by

two factors ™ deployment configuration and whether the engine is a client or a server.

The object, which is passed to each Handler invocation, is a MessageContext. A

MessageContext is a structure, which contains several important parts: 1) a ”request’

message, 2) a ”response’ message, and 3) a bag of properties.

There are two basic ways in which Axis is invoked:

1. As a server, a Transport Listener will create a MessageContext and invoke

the Axis processing framework.

2. As a client, application code (usually aided by the client programming model

of Axis) will generate a MessageContext and invoke the Axis processing

framework.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 10

In either case, the Axis framework–s job is simply to pass the resulting

MessageContext through the configured set of Handlers, each of which has an

opportunity to do whatever it is designed to do with the MessageContext.

Message Path on the Server

The server side message path is shown in the following diagram. The small cylinders

represent Handlers and the larger, enclosing cylinders represent Chains (ordered

collections of Handlers which will be described shortly).

A message arrives (in some protocol-specific manner) at a Transport Listener. In this

case, let–s assume the Listener is a HTTP servlet. It–s the Listener–s job to package

the protocol-specific data into a Message object (org.apache.axis.Message), and put

the Message into a MessageContext. The Listener also loads the MessageContext

with various properties. The Transport Listener also sets the transportName String

on the MessageContext. Once the MessageContext is ready to go, the Listener

hands it to the AxisEngine.

The AxisEngine–s first job is to look up the transport by name. The transport is an

object, which contains a request Chain, a response Chain, or perhaps both. A

Chain is a Handler consisting of a sequence of Handlers, which are invoked in turn.

Figure x.x - The Message Path on the Server

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 11

If a transport request Chain exists, it will be invoked, passing the MessageContext

into the invoke() method. This will result in calling all the Handlers specified in the

request Chain configuration.

After the transport request Handler, the engine locates a global request Chain, if

configured, and then invokes any Handlers specified therein.

At some point during the processing up until now, some Handler has hopefully set

the serviceHandler field of the MessageContext (this is usually done in the HTTP

transport by the ”URLMapper’ Handler, which maps a URL like

”http://localhost/axis/services/AdminService’ to the ”AdminService’ service). This field

determines the Handler we–ll invoke to execute service-specific functionality, such as

making an RPC call on a back-end object.

Services in Axis are typically instances of the ”SOAPService’ class (org.apache.

axis.handlers.soap.SOAPService), which may contain request and response Chains

(similar to what we saw at the transport and global levels), and must contain a

provider, which is simply a Handler responsible for implementing the actual back

end logic of the service.

For RPC-style requests, the provider is the org.apache.axis.providers.java.

RPCProvider class. This is just another Handler that, when invoked, attempts to call

a backend Java object whose class is determined by the ”className’ parameter

specified at deployment time. It uses the SOAP RPC convention for determining the

method to call, and makes sure the types of the incoming XML-encoded arguments

match the types of the required parameters of the resulting method.

The Message Path on the Client

The Message Path on the client side is similar to that on the server side, except the

order of •ircea•g is reversed, as shown below.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 12

The service Handler, if any, is called first ™ on the client side, there is no ”provider’

since the service is being provided by a remote node, but there is still the possibility

of request and response Chains. The service request and response Chains perform

any service-specific processing of the request message on its way out of the system,

and also of the response message on its way back to the caller.

After the service request Chain, the global request Chain, if any, is invoked, followed

by the transport. The Transport Sender, a special Handler whose job it is to actually

perform whatever protocol-specific operations are necessary to get the message to

and from the target SOAP server, is invoked to send the message. The response (if

any) is placed into the responseMessage field of the MessageContext, and the

MessageContext then propagates through the response Chains ™ first the transport,

then the global, and finally the service.

Figure x.x - The Message Path on the Client

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 13

6.1 About Jasper Reports

JasperReports is a powerful report-generating tool that has the ability to

deliver rich content onto the screen, to the printer or into PDF, HTML, XLS, CSV and

XML files. It is entirely written in Java and can be used in a variety of Java enabled

applications to generate dynamic content [***2001.d].

Its main purpose is to help creating page oriented, ready to print documents in a

simple and flexible manner. JasperReports organizes data retrieved from a relational

database through JDBC according to the report design defined in an XML f ile. In

order to fill a report with data, the report design must be compiled first.

Through compilation, the report design is loaded into a report design object that is

then serialized and stored on disk (dori.jasper.engine.JasperReport). This serialized

object is then used when the application wants to fill the specified report design with

data. In fact, the compilation of a report design implies the compilation of all Java

expressions defined in the XML file representing the report design. Various

verifications are made at compilation time, to check the report design consistency.

The result is a ready to fill report design that will be then used to generate documents

on different sets of data. In order to fill a report design, one can use the

fillReportXXX() methods exposed by the dori.jasper.engine.JasperManager class.

Those methods receive as a parameter the report design object, or a file

representing the specified report design object, in a serialized form, and also a JDBC

connection to the database from where to retrieve the data to fill the report. The

result is an object that represents the ready to print document

(dori.jasper.engine.JasperPrint) and can be stored onto the disk, in a serialized form,

for later use, or can be delivered to the printer, to the screen or can be transformed

into a PDF, HTML, XLS, CSV or XML document.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 14

Project Specifications

3.1 Project design
 In this project we have used tree-tier layer design composed of the client ™

web application server ™ database server. In the figure x.x you can see these

components.

System diagram

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 15

I–ll describe now the components from this figure:

1. MySQL Database server [***1995,c] ™ this represents the main database in

witch are stored all data used in the client applications

2. Apache Tomcat Web Server [***1999,e] with Axis Web Services engine ™

this represents a Web Services engine that communicate with clients and

database server, I–ll describe the communication protocol lather.

3. Warehouse Administrator ™ this is a client written in Visual Basic language

and represents the client that administrates the warehouse using this

application. This is useful because all data are stored in the main database

and it can be accessed by other authorized clients like ”Marketing and

Management’

4. Bar Code Label Printer ™ this is a printer device that is connected to the

”Warehouse Administrator’ computer and is meant for printing the items

bar code for items in the warehouse.

5. Apache Web Server ™ this represents the web server on witch is installed

the company web site and also the api interface for communication with

Web Services application server.

6. Web Manager ™ this represents the ”Marketing and Management’ user and

he is responsible for client–s administration and also for publishing on the

web the company–s products.

7. Web Client ™ this an end-user that can access the company–s web site and

to see the latest company–s products.

Until now I have described the low level of the infrastructure and that means

that has to be integrated into intranet infrastructure.

The web server on witch is installed the company–s web site ca be any where in
the world and then the communication with the Web Services server is done
trough the internet or it can be installed on the same server on witch is installed
the Web Services an than we–ll use the intranet.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 16

Use Ņ Case diagram

Now I–ll like to present the use ™ case diagram for the customer, warehouse

administrator and manager (Marketing and Management)

Table x.x

From this diagram we can see the main actions that has to be implemented in order

to satisfy the users needs.

Sequence diagrams
Now lets see what–s happening when a client that can be a web browser or any other

application that can interpret the XML and SOAP functionalities, requests for a

function [Figure x.x] from a Web Service and the response [Figure x.x] from the Web

Services server, in this sequence diagrams you can see the interactions:

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 17

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 18

Figure x.x

3.2. System functionalities
 In this chapter I–ll describe the main functionalities grouped by the tree-tier

layer design (client ™ web services app server ™ database server).

This table [Table x.x] represents the functionalities for database server tier:

Bean Description Properties
Magazie Java class that represents database table ”Magazie’

- load(ResultSer) : Magazie ™ this function loads form the result set
data into the bean

- CreateRecord(Connection, int) : int ™ this function creates new
record from data that is loaded into the bean with new primary key

- UpdateRecord(Connection) : int ™ this function updates the
record

pk_magazie : int
nr_doc : int
Index_nir : String
data_receptie :
java.util.Date
Cantiate : float
Pret : float
Valoare : float
Dulap : String
Raft : String
Fk_produs : int
Fk_furnizor : int

Produs Java class that represents database table ”Produse’
- load(ResultSer) : Produs ™ this function loads form the result set

data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_produs : int
nume : String
cod_produs : String
cod_bara_furnizor :
String
caracteristici_teh :
byte[]
stoc_minim : int
Fk_clasaprodus : int
Fk_producator : int

Producator Java class that represents database table ”Producatori’
- load(ResultSer) : Producator ™ this function loads form the result

set data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_producator : int
nume : String
adresa : String
oras : String
tara : String
telefon : String
email : String
url : String

ProdusFinal Java class that represents database table ”ProduseFinale’
- load(ResultSer) : ProdusFinal ™ this function loads form the result

set data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_produsfinal : int
nume : String
data_finalizarii :
java.util.Date
cod_bara : String
cod_bara_pic : byte[]

Inspectie Java class that represents database table ”Inspectii’
- load(ResultSer) : Inspectie ™ this function loads form the result

set data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_inspectie : int
data_expirarii :
java.util.Date
rezultatul_inspectiei :
int
Fk_magazie : int

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 19

Furnizor Java class that represents database table ”Furnizori’
- load(ResultSer) : Furnizor ™ this function loads form the result set

data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_furnizor : int
nume : String
adresa : String
oras : String
tara : String
telefon : String
email : String
url : String

CodBara Java class that represents database table ”CodBare’
- load(ResultSer) : CodBara ™ this function loads form the result set

data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_codbara : int
cod_bara : String
cod_bara_pic : byte[]
Fk_magazie : int

Client Java class that represents database table ”Clieti’
- load(ResultSer) : Client ™ this function loads form the result set

data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_client : int
nume : String
adresa : String
oras : String
tara : String
telefon : String
email : String
url : String

ClasaProdus Java class that represents database table ”ClasaProduse’
- load(ResultSer) : ClasaProdus ™ this function loads form the

result set data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_clasaprodus : int
nume_clasa : String
cod_clasa : String

BonConsum Java class that represents database table ”BonuriConsum’
- load(ResultSer) : BonConsum ™ this function loads form the result

set data into the bean
- CreateRecord(Connection, int) : int ™ this function creates new

record from data that is loaded into the bean with new primary key
- UpdateRecord(Connection) : int ™ this function updates the

record

pk_bonconsum : int
nr_doc : int
data_eliberari :
java.util.Date
cantitate : float
pret : float
valoare : float
gestionar : String
preluator : String
Fk_magazie :int
Fk_produsfinal : int

Table x.x

The next tables [Table x.x] represents functionalities for web services app server:

Service name (magServ) Description
getAllFromMagazie(int from,int to) : Magazie[] Return from database table ”Magazie’ all records from point

”from’ to point ”to’ specified like arguments
getAllFromProduse(int from,int to) : Produse[] Return from database table ”Produse’ all records from point

”from’ to point ”to’ specified like arguments
getAllFromProducatori(int from,int to) : Producator[] Return from database table ”Producatori’ all records from

point ”from’ to point ”to’ specified like arguments
getAllFromProduseFinale(int from,int to) : ProdusFinal[] Return from database table ”ProduseFinale’ all records from

All this java beans represents tables from the database with functionalities for
loading, creating and updating data.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 20

point ”from’ to point ”to’ specified like arguments
getAllFromFurnizori(int from,int to) : Furnizor[] Return from database table ”Furnizori’ all records from point

”from’ to point ”to’ specified like arguments
getAllFromClienti(int from,int to) : Client[] Return from database table ”clienti’ all records from point

”from’ to point ”to’ specified like arguments
getAllFromClasaProduse(int from,int to) : ClasaProdus[] Return from database table ”ClasaProduse’ all records from

point ”from’ to point ”to’ specified like arguments
getAllFromBonuriConsum(int from,int to) : BonConsum[] Return from database table ”BonuriConsum’ all records from

point ”from’ to point ”to’ specified like arguments
createUpdateMagazie(Magazie arg) : int Create or update record from database table. If the argument

bean has no specified primary key then new record is created
and if is specified then is update

createUpdateProdus(Produs arg) : int - // -
createUpdateProducator(Producator arg) : int - // -
createUpdateProdusFinal(ProdusFinal arg) : int - // -
createUpdateFurnizor(Furnizor arg) : int - // -
createUpdateClient(Client arg) : int - // -
createUpdateClasaProdus(ClasaProdus arg) : int - // -
createUpdateInspectie(Inspectie arg) : int - // -
createUpdateCodBara(CodBara arg) : int - // -
createUpdateBonConsum(BonConsum arg) : int - // -
deleteMagazie(int pk) : Boolean Delete from database table by primary key and return true if

the is deleted with success
deleteProducator(int pk) : Boolean - // -
deleteProdusFinal(int pk) : Boolean - // -
deleteFurnizor(int pk) : Boolean - // -
deleteClient(int pk) : Boolean - // -
deleteInspectie(int pk) : Boolean - // -
deleteCodBara(int pk) : Boolean - // -
deleteClasaProdus(int pk) : Boolean - // -
deleteBonConsum(int pk) : Boolean - // -
deleteProdus(int pk) : Boolean - // -

Service name (reportServ) Description
createFisaDeMagazie(int pk_produs) : byte[] Create detailed report that contains quantities of the

specified product that has bean entered and left the
warehouse and the current stock of that item

createBonDeConsumPartial(int pk_produsfinal,int nr_bon) :
byte[]

Create detailed report that contains the list of items
that has bean left the warehouse for a final product
with registered number

createBonDeConsumTotal(int pk_produsfinal) : byte[] Create detailed report that contains the list of items
that has bean left the warehouse for a final product

Service name (webServ) Description
getAllFromCatalog() : Catalog[] Return list of all web catalogs
getAllProductsFromCatalog(int pk_catalog) : Product[] Return list of products form some catalog
getProductDetails(int pk_product) : Product Return product details
getAllClients() : Client[] Return list of clients
createUpdateCatalog(Catalog arg) : int Create or update the catalog
createUpdateProduct(Product arg) : int Create or update the product
createUpdateClient(Client arg) : int Create or update the client
deleteCatalog(int pk_catalog) : boolean Delete catalog and return true if succeeded
deleteClient(int pk_client) : boolean Delete client and return true if succeeded
deleteProduct(int pk_product) : boolean Delete product and return true if succeeded

All this services are public for all clients that deserve and use these
functionalities trough the axis web services engine. To see how to deploy the
web service on Apache Tomcat see the appendix [Appendix A]

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 21

The next table represents the functionalities for client ™ tier:

Warehouse Administration

Interfaces name Description
MagServ

Classes Description
MagazieBean Data from table ”Magazie’
ProdusBean Data from table ”Produse’
ProducatorBean Data from table ”Producatori’
ProdusFinalBean Data from table ”ProdusFinal’
InspectieBean Data from table ”Inspectii’
FurnizorBean Data from table ”Furnizori’
CodBaraBean Data from table ”CodBare’
ClientBean Data from table ”Clienti’
ClasaProdusBean Data from table ”ClasaProduse’
BonConsumBean Data from table ”BonConsum’

This interface contains all the functions and java
beans serialized and de-serialized used for this web
service and are described in a WSDL (Web Service
Description Language) that is published to Web
Services server.

ReportServ
- CreateWarehouseInventory(int) : byte[]

- ItemTracking(int) : byte[]

- GetFinalProductsItems(int) : byte[]

This interface contains all the functions and java
beans serialized and de-serialized used for this web
service and are described in a WSDL (Web Service
Description Language) that is published to Web
Services server.

Table x.x

Marketing and Management

Interfaces name Description
WebAppServ

Classes Description
ClientBean Data from table ”Clienti’
CatalogBean Data from table ”Catalog’
WebProduseBean Data from table ”Web_Produse’

This interface contains all the functions and java
beans serialized and de-serialized used for this web
service and are described in a WSDL (Web Service
Description Language) that is published to Web
Services server.

ReportServ
- CreateWarehouseInventory(int) : byte[]

- ItemTracking(int) : byte[]

- GetFinalProductsItems(int) : byte[]

This interface contains all the functions and java
beans serialized and de-serialized used for this web
service and are described in a WSDL (Web Service
Description Language) that is published to Web
Services server.

Table x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 22

3.3 User Interfaces
 The user interfaces are categorized in:

a) Warehouse Visual Basic Client

b) Web Client Interfaces

a). Warehouse Visual Basic Client

 This form represents the Main Menu for administration of warehouse program
designed in visual basic language. From here we can access all other
functionalities related to warehouse administration using:
 Fast access buttons:

1. Open ”Warehouse Items’ dialog (Figure x.x)
2. Open ”Consumed Items’ dialog
3. Open ”Reports’ dialog

 Toolbar:
4. Group of two buttons, first adds new item into warehouse and second

displays existing items for editing or deleting (Figure x.x, Figure x.x)
5. Group of two buttons, first adds new furnisher and second displays existing

one for editing or deleting (Figure x.x)

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 23

6. Group of two buttons, first adds new item into database and second
displays existing one for editing and deleting

7. Group of two buttons, first adds new item class into database and second
displays existing one for editing and deleting

8. Group of two buttons, first adds new final product into database and
second displays existing one for editing and deleting

9. Group of two buttons, first adds new client into database and second
displays existing one for editing and deleting

This form contains items from warehouse with following controls:
1. Controls for adding, editing, deleting, reloading and searching items
2. Fast search from list
3. List that contains items from warehouse
4. Selected item index
5. Exit from this form

Figure. 2

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 24

 This form adds new item into warehouse that contains data about document,
furnisher, item, and warehouse placement, product info.

1. Add new furnisher (Fig.4)
2. Add new item into database (Fig.5)
3. Set item inspection (Fig.6)
4. Set items minim stock (Fig.7)
5. Print bar code label (Fig.8)
6. Save new item into warehouse database
7. Fast search button

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 25

 This form adds new furnisher into database.

 This form adds new item into database.

Figure x.x

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 26

 This form sets inspection for item added in warehouse.

This form sets item minim stock in warehouse.

Fig.6 -

Fig.7 � Item Minim

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 27

 This form prints bar code label for item that has been introduced into
warehouse.

Fig.8 � Label

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 28

b). Web Client interfaces

 This page represents main page for web client. From here you can see two
links for clients in this project that access web catalog of the final products, displayed
alphabetically or by category, and a link that is used for management solutions.

Fig.9 � Web main page

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 29

 This page displays products ordered alphabetically. If select some of the product
from list the product details is displayed (Fig.13).

Fig.10 Products displayed

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 30

 This page displays categories of products. If some of the category is selected from
list the products from that category are displayed.

Fig.11 � Products displayed by

Fig.12 � Product

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 31

 This page represents main page for management solutions. From here the
manager can administrate catalogs, products and clients. Also he can create reports
in different formats like HTML, PDF or XLS.

Fig.13 � Management Solution

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 32

3.4 Database structure
 Like a database server we have used the MySQL[***1995,c] because is free

and is very efficient for our needs. We need a database where we can store the data

for warehouse administration and for marketing and management needs.

In the next figure you can see the database structure and relations between the

tables.

Figure x.x

Table list

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 33

Table,s description:

BonuriConsum

ClasaProduse

Clienti

CodBare

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 34

Furnizori

Inspectii

Magazie

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 35

Producatori

Produse

ProduseFinale

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 36

3.5 System communication

 In our system we have two types of communications between modules and
those are Http communication and object communications.
Communication between the system modules (tiers) is categorized by:

a) SOAP communication
b) Database communication
c) Printer communication

a) SOAP communication

What is SOAP?

SOAP is an XML-based communication protocol and encoding format for inter -

application communication. Originally conceived by Microsoft and Userland software,

it has evolved through several generations and the current spec, SOAP 1.1, is fast

growing in popularity and usage. The W3C–s XML Protocol working group [***2000,b]

is in the process of turning SOAP into a true open standard, and as of this writing has

released a working draft of SOAP 1.2, which cleans up some of the more confusing

areas of the 1.1 spec.

SOAP is widely viewed as the backbone to a new generation of cross-platform cross-

language distributed computing applications, termed Web Services.

What is Axis?

Axis is essentially a SOAP engine ™ a framework for constructing SOAP processors

such as clients, servers, gateways, etc. The current version of Axis is written in Java,

but a C++ implementation of the client side of Axis is being developed.

But Axis isn–t just a SOAP engine ™ it also includes:

• a simple stand-alone server,

• a server which plugs into servlet engines such as Tomcat,

• extensive support for the Web Service Description Language (WSDL),

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 37

• emitter tooling that generates Java classes from WSDL.

• some sample programs, and

• a tool for monitoring TCP/IP packets.

Axis is the third generation of Apache SOAP (which began at IBM as ”SOAP4J’). In

late 2000, the committers of Apache SOAP v2 began discussing how to make the

engine much more flexible, configurable, and able to handle both SOAP and the

upcoming XML Protocol specification from the W3C.

After a little while, it became clear that a ground-up re-architecture was required.

Several of the v2 committers proposed very similar designs, all based around

configurable ”chains’ of message ”handlers’ which would implement small bits of

functionality in a very flexible and compassable manner.

Axis comprises several subsystems working together with the aim of

separating responsibilities cleanly and making Axis modular. Subsystems, which are

properly layered, enable parts of a system to be used without having to use the

whole of it (or hack the code).

The following diagram shows the layering of subsystems. The lower layers are

independent of the higher layers. The ®stacked– boxes represent mutually

independent, although not necessary mutually exclusive, alternatives. For example,

the HTTP, SMTP, and JMS transports are independent of each other but may be

used together.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 38

Client Side Processing

The client side Axis processing constructs a Call object with associated Service,

MessageContext, and request Message as shown below before invoking the

AxisClient engine.

An instance of Service and its related AxisClient instance are created before the Call

object. Invoking the Service.createCall factory method then creates the Call object.

Call.setOperation creates a Transport instance, if a suitable one is not already

associated with the Call instance. Then Call.invoke creates a MessageContext and

associated request Message, drives AxisClient.invoke, and processes the resultant

MessageContext.

This significant method calls in this sequence are shown in the following interaction

diagram.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 39

b) Database connections
Database connection is realized using java mysql driver and represents the low

level communication between the java virtual machine and mysql server trough http

sockets. For this communication I don–t have to say nothing more because is so

popular and is not the issue of discussion.

c) Printer communication
This communication is done trough parallel port LPT 1 the printer port and for this

application that administrate the warehouse we–ll use the specialized bar code printer

from Intermec EasyCoder C4.

The EasyCoder C4 printers from Intermec are provided with a built-in protocol

(Esim) by which you can use any computer, terminal, scanner or keyboard that can

produce ASCII characters, to control the printer. This is a useful alternative to the

Intermec InterDriver, which requires a PC operating under Microsoft Windows. With

the Esim protocol, you can use any editor to control the printer, either by means of

the serial RS-232 channel or the parallel Centronics channel.

3.6 Type of reports
 The warehouse administrator and the marketing and management manager

generate the reports. Reports are data from the database represented and selected

in different forms and formats. Using the Jasper Reports we can display and print the

report in a PDF, HTML and XLS file format.

For this application we–ll be able to create tree types of reports:

1. Warehouse inventory

2. Item tracking

3. Final product items

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 40

1. Warehouse inventory
This type of report represents the inventory for a particular item so we–ll see the

amount of items that has been entered into warehouse and the amount of items that

has been left the warehouse and the total items that are currently in the warehouse

on the stack.

In the next figure [Figure x.x] you–ll see an example of this type of report in PDF file

format.

2. Item tracking
This type of report represents the tracking items that has been expired or expires in a

near period.

In the next figure [Figure x.x] you–ll see an example of this type of report in PDF file

format.

Figure x.x

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 41

3. Final product Items
This type of report represents the tracking items that has been used for a particular

final product or has bean sold to the client.

In the next figure [Figure x.x] you–ll see an example of this type of report in PDF file

format.

3.7 Security and risk analysis
A standard attack on a web site is usually that of identifying and abusing badly

written CGI scripts. Anything that gives read access to the file system is a security

hole, letting people get at the code behind the site, often including database

passwords and other sensitive data, plus of course there are the core parts of the

underlying platform, which may contain important information: passwords, credit card

lists, user-private information, and the like. Unauthorized access to this data can be

embarrassing and expensive.

Having write access to the system leads to even greater abuses; defaced web sites

may be created, spoof endpoints written to capture caller–s data, or the database

directly manipulated.

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 42

XML messages have a few intrinsic weaknesses that Web Service creators should

know about. None of these problems are unique to SOAP; anyone processing

incoming XML needs to know and resist these.

1. Large XML Docukents

. Have a client post an XML doc of extreme length/depth

<ha><ha><ha>....</ha></ha></ha>. This does bad things to DOM parsers

and memory consumption on the server: a DoS attack. The issue here is

that the costs of handling a large XML document are much greater than

the cost of generating one.

2. Entity Expansion Attacks. If an XML doc header declares some recursive

entity declarations, and the file refers to them, then bad things happen.

Axis became immune to this between versions 1.0 and 1.1.

3. Entities referring to the file system.

Here you declare an entity referring to a local file, then expand it. Result:

you may be able to probe for files, perhaps even get a copy of it in the

error response. As Axis does not support entities any more, it resists this.

If your code has any way of resolving URLs from incoming messages, you

may recreate this problem.

The other thing to know about XML is that string matching is not enough to be sure

that the content is safe, because of the many ways to reformat the same XML.

A core philosophy is ®defend in depth–, with monitoring for trouble.

Disguise

One tactic here is to hide the fact that you are running Axis...look at all the headers

that we send back to describe the service, and if any identify Axis, edit that constant

in the source. While obscurity on its own is inadequate; it can slow down attacks or

make you seem less vulnerable to known holes.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 43

Cut down the build

Rebuild Axis without bits of it you •irce need. This is a very paranoid solution, but

keeps the number of potential attack points down. One area to consider is the ®instant

SOAP service– feature of JWS pages. They, along with JSP pages, provide anyone

who can get text files onto the web application with the ability to run arbitrary Java

code.

Rename things

The AxisServlet, the AdminService, even happyaxis.jsp are all in well known

locations under the webapp, which is called ®axis– by default. Rename all of these, by

editing web.xml for the servlet, server-config.wsdd for the AdminService; the others

are just JSP and WAR files you can rename. You may not need the AdminService

once you have generated the server config on a development machine.

Stop AxisServlet listing services

To do this, set the Axis global configuration property axis.enableListQuery to false.

Keep stack traces out of the responses

By default, Axis ships in production mode; stack traces do not get sent back to the

caller. If you set axis.development.system to true in the configuration, stack traces

get sent over the wire in faults. This exposes internal information about the

implementation that may be used in finding weaknesses.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 44

6.1 Project Management
 To accomplish this project I–ve decided for a ”water-flow’ life cycle like project

management style because it–s easy to monitor and at any time I can have a picture

of what is done and what–s not, and at the same time I can be test the finished work.

 I–ll present in the next step the list of tasks and the ”GANTT-CHART’ for those tasks

designed in Microsoft Project [Figure x.x, Figure x.x].

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 45

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 46

Project design
4.1 Programming structure

 The main problem in this project is to integrate different types of applications

to communicate to each other trough a unique language. This is possible to realize

using the XML and SOAP web service. But this is not all, this represents only the

manner of connecting different applications to communicate trough a bridge, we need

also to be able to interpret this kind of language so for this I decided for this

technologies:

a) Java language for the end-server side

b) Axis web services middle tier responsible for bridging the front and end

side

c) Visual basic language with SOAP toolkit for a client

d) Jsp for web browser application for a end user client

e) Apache Tomcat for web application server

f) MySql database server

Now let–s get the big picture of what we have to do.

In this figures [Figure x.x, Figure x.x, Figure x.x] we can see the class diagrams witch

represents java beans that correspond to each table f rom database database

services and a web services. These are reused by public functions from web

services.

4.2 Component description

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 47

DBConstants
ClasaProdus

+ClasaProdus
+load:ClasaProdus
+createRecord:void
+updateRecord:void

 cod_clasa:String
 nume_clasa:String
 pk_clasa_produs:int

DBConstants
WebProdus

+load:WebProdus
+createRecord:void
+updateRecord:void

 descriere:String
 nume:String
 pic:byte[]
 pk_web_produs:int
 pk_catalog:int

DBConstants
CodBara

+CodBara
+CodBara
+load:CodBara
+createRecord:void
+updateRecord:void
+getCodBaraByPK:void

 cod_bara:String
 cod_bara_pic:byte[]
 FK_magazie:int
 pk_codbara:int

DBConstants
Inspectie

+Inspectie
+load:Inspectie
+createRecord:void
+updateRecord:void

 data_expirarii:java.util.Calendar
 FK_magazie:int
 pk_inspectii:int
 rezultatul:int

DBConstants
BonConsum

+BonConsum
+load:BonConsum
+createRecord:void
+updateRecord:void

 cantitate:float
 data_eliberarii:java.util.Calendar
 FK_magazie:int
 FK_produsefinale:int
 gestionar:String
 nr_doc:int
 pk_bonconsum:int
 preluator:String
 pret:float
 valoare:float

DBConstants
Client

+Client
+load:Client
+createRecord:void
+updateRecord:void

 adresa:String
 email:String
 nume:String
 oras:String
 pk_client:int
 tara:String
 telefon:String
 url:String

DBConstants
Producator

+Producator
+load:Producator
+createRecord:void
+updateRecord:void

 adresa:String
 email:String
 nume:String
 oras:String
 pk_producator:int
 tara:String
 telefon:String
 url:String

DBConstants
Furnizor

+Furnizor
+load:Furnizor
+createRecord:void
+updateRecord:void

 adresa:String
 email:String
 nume:String
 oras:String
 pk_furnizor:int
 tara:String
 telefon:String
 url:String

DBConstants
Produs

+Produs
+load:Produs
+createRecord:void
+updateRecord:void

 caracteristici_teh:byte[]
 cod_bara_furnizor:String
 cod_produs:String
 nume:String
 pk_produs:int
 stoc_minim:int
 FK_clasaprodus:int
 FK_producator:int

com.mircea.database.service.DBConstants
Catalog

+load:Catalog
+createRecord:void
+updateRecord:void

 descriere:String
 nume:String
 pk_catalog:int

DBConstants
ProdusFinal

+ProdusFinal
+load:ProdusFinal
+createRecord:void
+updateRecord:void

 cod_bara:String
 cod_bara_pic:byte[]
 data_finalizarii:java.util.Calendar
 nume:String
 pk_produsfinal:int

DBConstants
Magazie

-FK_furnizor:int
-FK_produs:int

+Magazie
+load:Magazie
+createRecord:void
+updateRecord:void

 cantitate:float
 data_receptie:java.util.Calendar
 dulap:String
 FK_furnizori:int
 FK_produse:int
 index_nir:String
 nr_doc:int
 pk_magazie:int
 pret:float
 raft:String
 um:String
 valoare:float

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 48

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 49

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 50

In the first figure [Figure x.x] we have the list of beans that performs and stores

database data and actions.

Java Beans description

Package: com.•ircea.database.beans
All java beans have the same functionality so I–ll present in general one.

Implements: com.•ircea.database.service.DBConstants
This interface is used for defining SQL commands for select, update and delete

actions.

Public setXX() and getXX() functions
The next functions are the same for all other beans and are used for loading, creating

and updating data into table from java bean and inverse.

Function: load(ResultSet) : JavaBean

This function loads data from given ResultSet that is returned by selecting the

database table into java bean.

Function: CreateRecord(Connection,int) : void

load
ResultSet JavaBean

CreateRecord
Connection,int

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 51

This function creates new record into database table with data from java bean, using

given connection and new primary key for that record.

Function: UpdateRecord(Connection) : void

This function updates record into database table with data from java bean, us ing

given connection for that record.

In the figure [Figure x.x] is represented the database services like database

connection, and all functionalities for selecting, creating, updating and deleting a

record. In this figure you can see all functionalities that has to be implemented and I–ll

discuss only how it has to be implemented the connection and how to use the

connection for committing the SQL actions that has bean defined in DBConstants

interface.

Database services description

Package: com.mircea.database.service
Implements: com.mircea.database.service.DBConstants
Class: Database
This class performs all actions regarded to the database usage

The connection is done in function getConnection(), this function reads from a

property file the database name and java connection driver. The database

connection is returned after the connection is created with a database server.

UpdateRecord
Connection

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 52

Now using this connection we–ll create all other functions for select, update, create

and delete, here is an example for these actions:

getConnection()
Connection

 public static Magazie[] getAllFromMagazie(int from,int to){
 Connection db_conn = getConnection();
 ResultSet res = null;
 Magazie mag[] = null;
 Magazie magazie = null;
 PreparedStatement ps = null;
 try{
 if(to == 0)
 ps = db_conn.prepareStatement(GET_ALL_FROM_MAGAZIE);
 else{
 ps = db_conn.prepareStatement(GET_ALL_FROM_MAGAZIE_LIMIT);
 ps.setInt(1,from);
 ps.setInt(2,to);
 }

 res = ps.executeQuery();
 int count = getTableCount(res);
 res.beforeFirst();
 mag = new Magazie[count];
 for(int i=0;i< count;i++){
 res.next();
 magazie = new Magazie();
 mag[i] = magazie.load(res);
 }

 db_conn.close();
 }catch(SQLException ex){
 System.err.println("SQLException ");
 ex.printStackTrace();

 }
 return mag;
 }

Listing x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 53

In this listing [Listing x.x] is an example for getting all records from a database table

in a limit ”from’ ™ ”to’.

In this listing [Listing x.x] is an example for getting a record from a database by

primary key ”pk’.

public static Inspectie getInspectieByPK(int pk){
 Connection conn = getConnection();
 ResultSet res = null;
 Inspectie insp = null;
 try{
 PreparedStatement ps = conn.prepareStatement(GET_INSPECTIE_BY_PK);
 ps.setInt(1,pk);
 res = ps.executeQuery();
 if(res.next()){
 insp = new Inspectie();
 insp.load(res);
 }
 conn.close();
 }catch(SQLException ex){
 System.err.println("SQLException ");
 ex.printStackTrace();
 }
 return insp;
 }

Listing x.x

public static int createUpdateMagazie(Magazie mag){
 Connection conn = getConnection();
 int ret = 0;
 if(mag.getPk_magazie() > 0){ //Update
 ret = mag.getPk_magazie();
 mag.updateRecord(conn);

 }else{ //Create
 ret = getTableNewPK("pk_magazie","Magazie");
 mag.createRecord(conn,ret);

 }
 return ret;
}

Listing x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 54

In this listing [Listing x.x] is an example of creating or updating a record by passing

the object values and properties.

In this listing [Listing x.x] is an example of deleting a record by primary key ”pk’.

Web Services public functions

Package: com.mircea.axis
Class: MagazieServices
Class: WebAppServices
These two classes are responsible for bridging the applications trough the SOAP

protocol. To publish the web services using axis engine we need to copy the classes

into ”classes’ directory where the axis is installed.

After we do that web have to deploy the functions that we need to be public, more

about how to deploy see appendix [Appendix A].

public static boolean deleteFromMagazie(int pk){
 Connection conn = getConnection();
 boolean res = false;
 try{
 PreparedStatement ps =
conn.prepareStatement(DELETE_FROM_MAGAZIE);
 ps.setInt(1,pk);
 ps.execute();
 res = true;
 conn.close();
 }catch(SQLException ex){
 System.err.println("SQLException ");
 ex.printStackTrace();
 }
 return res;
 }

Listing x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 55

4.3 Sequence diagram
 In this section I–ll present the interaction between a client ™ web services ™

database server. The next figure [Figure x.x] represents a sequence diagram

between those components.

Here we can see that when a client request an action from a web services, the web

service first has to de-serialize that SOAP message request to find appropriate

callable function and to perform that action, and at the end to serialize the response

and to respond to the client with a SOAP message.

Figure x.x

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 56

Installation

System requirements
 For installing the application on a client server we need this requirements:

- java 1.4 or higher

- Apache Tomcat 4.0

- Axis 1.1 or higher

- MySql 3.21

Library dependencies
- ant libraries

- axis libraries

- jasperreports libraries

- webAppServicesAPI libraries

Installation
 To install our application properly on a client server first of all it has to be

installed the axis engine firs and after that to run the install ant application that will

install all other libraries and will deploy the web service on that server.

For installing the Visual Basic application ”virtualMag’ will run the setup.exe file that

will lunch a wizard for configuration of the network and other properties.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 57

Final Results

6.1 Component tests
 To assure that all components are working together properly we have to make

some tests. We–ll use the JUnit test tool from www.junit.org for testing java classes.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 58

Conclusion

Web Services are one of the hottest technologies going right now but there

are a number of pitfalls that any programmer must be aware of. Data Integrity is

important for any object–s proper functioning and must be assured or it could corrupt

a larger program and generate a very difficult to trace error. By using the techniques

from this project you can keep your objects safe and your data assured.

Today–s business environment demands a new breed of Web applications that

will accelerate your entry into new markets, help you reach and retain customers,

and streamline operating efficiency. The widespread adoption of the Internet and the

explosion of Web applications have provided the unprecedented ability to extend the

value and impact of key enterprise functions with next generation solutions for

customers, internal stakeholders, and partners. Now, Web Services are looming on

the horizon of IT strategies and business plans, promising the next phase of business

value via universal, distributed computing.

The real advantages by using the Web services are:

- Interoperability

- Ubiquity

- Loosely coupled applications

- Working applications

- Support of software industry leaders

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 59

For this project the real benefit is that we can administrate the warehouse at the

single place and to have access to that database from other part of the globe.

Other interesting part is that this application can be easily extended into other

domains.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 60

Bibliography

[***2003,a] Apache Software Foundation, Axis Web Service.

http://ws.apache.org/axis/

[***2000,b] Simple Object Access Protocol (SOAP) 1.1

http://www.w3.org/TR/SOAP/

[***1995,c] MySQL� database server

http://www.mysql.com/

[***2001,d] Jasper Reports

http://jasperreports.sourceforge.net/index.html

[***1999,e] Jakarta Apache Tomcat

http://jakarta.apache.org/tomcat/

[***2002,f] Microsoft SOAP Toolkit

http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?con

tentid=28000523

[***2003,g] Web Services Journal

http://www.sys-con.com/webservices/

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 61

Appendix A

Publishing Web Services with axis

Let's say we have a simple class like the following:
public class Calculator {
 public int add(int i1, int i2)
 {
 return i1 + i2;
 }

 public int subtract(int i1, int i2)
 {
 return i1 - i2;
 }
}
(You'll find this very class in samples/userguide/example2/Calculator.java.)

How do we go about making this class available via SOAP? There are a couple
of answers to that question, but we'll start with the easiest way Axis provides to
do this, which takes almost no effort at all!

JWS (Java Web Service) Files - Instant Deployment

OK, here's step 1 : copy the above .java file into your webapp directory, and
rename it "Calculator.jws". So you might do something like this:
% copy Calculator.java <your-webapp-root>/axis/Calculator.jws
Now for step 2... hm, wait a minute. You're done! You should now be able to
access the service at the following URL (assuming your Axis web application is
on port 8080):

http://localhost:8080/axis/Calculator.jws

Axis automatically locates the file, compiles the class, and converts SOAP calls
correctly into Java invocations of your service class. Try it out - there's a
calculator client in samples/userguide/example2/CalcClient.java, which you can
use like this:

% java samples.userguide.example2.CalcClient -p8080 add 2 5
Got result : 7
% java samples.userguide.example2.CalcClient -p8080 subtract 10 9
Got result : 1%

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 62

(note that you may need to replace the " -p8080" with whatever port your J2EE
server is running on)

Important: JWS web services are intended for simple web services. You
cannot use packages in the pages, and as the code is compiled at run time you
can not find out about errors until after deployment. Production quality web
services should use Java classes with custom deployment.

Custom Deployment - Introducing WSDD

JWS files are great quick ways to get your classes out there as Web Services,
but they're not always the best choice. For one thing, you need the source code
- there might be times when you want to expose a pre-existing class on your
system without source. Also, the amount of configuration you can do as to how
the service gets accessed is pretty limited - you can't specify custom type
mappings, or control which Handlers get invoked when people are using your
service. (note for the future : the Axis team, and the Java SOAP community at
large, are thinking about ways to be able to embed this sort of metadata into
your source files if desired - stay tuned!)
Deploying via descriptors

To really use the flexibility available to you in Axis, you should get familia r with
the Axis Web Service Deployment Descriptor (WSDD) format. A deployment
descriptor contains a bunch of things you want to "deploy" into Axis - i.e. make
available to the Axis engine. The most common thing to deploy is a Web
Service, so let's start by taking a look at a deployment descriptor for a basic
service (this file is samples/userguide/example3/deploy.wsdd):

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="MyService" provider="java:RPC">
 <parameter name="className"
value="samples.userguide.example3.MyService"/>
 <parameter name="allowedMethods" value="*"/>
 </service>
</deployment>
Pretty simple, really - the outermost element tells the engine that this is a
WSDD deployment, and defines the "java" namespace. Then the service
element actually defines the service for us. A service is a targeted chain (see
the Architecture Guide), which means it may have any/all of: a request flow, a
pivot Handler (which for a service is called a "provider"), and a response flow.
In this case, our provider is "java:RPC", which is built into Axis, and indicates a
Java RPC service. The actual class which handles this is
org.apache.axis.providers.java.RPCProvider. We'll go into more detail later
on the different styles of services and their providers.

Business Software Solution  virtualMag "Politehnica" University of Timisoara
AT Embedded SW - Dissertation Project

 63

We need to tell the RPCProvider that it should instantiate and call the correct
class (e.g. samples.userguide.example3.MyService), and we do so by including
<parameter> tags, giving the service one parameter to configure the class
name, and another to tell the engine that any public method on that class may
be called via SOAP (that's what the "*" means; we could also have restricted
the SOAP-accessible methods by using a space or comma separated list of
available method names).

Advanced WSDD - specifying more options

WSDD descriptors can also contain other information about services, and also
other pieces of Axis called "Handlers" which we'll cover in a later section.

Scoped Services

Axis supports scoping service objects (the actual Java objects which implement
your methods) three ways. "Request" scope, the default, will create a new
object each time a SOAP request comes in for your service. "Application" scope
will create a singleton shared object to service all requests. "Session" scope
will create a new object for each session-enabled client who accesses your
service. To specify the scope option, you add a <parameter> to your service
like this (where "value" is request, session, or application):

<service name="MyService"...>
 <parameter name="scope" value="value"/>
 ...
</service>

Using the AdminClient
Once we have this file, we need to send it to an Axis server in order to actually
deploy the described service. We do this with the AdminClient, or the
"org.apache.axis.client.AdminClient" class. If you have deployed Axis on a
server other than Tomcat, you may need to use the -p <port> argument. The
default port is 8080. A typical invocation of the AdminClient looks like this:
% java org.apache.axis.client.AdminClient deploy.wsdd
<Admin>Done processing</Admin>
This command has now made our service accessible via SOAP. Check it out by
running the Client class - it should look like this:
% java samples.userguide.example3.Client -
lhttp://localhost:8080/axis/services/MyService "test me!"
You typed : test me!
%

